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The diffusion of slowly varying, weak magnetic fields by a statistically isotropic 
and stationary velocity field in a perfectly conducting fluid is studied by Eulerian 
analysis. The characteristic wavenumber and variance of the velocity field are 
Lo and 3 4 ,  thus defining the eddy-circulation time T~ = l/voko. The velocity field 
is assumed constant on intervals of duration 27, and statistically independent 
for distinct intervals. Thus the correlation time is T ~ .  The a-effect dynamo 
mechanism in the quasi-linear approximation is corroborated. Both the quasi- 
linear and the direct-interaction approximations give identical diffusion of 
magnetic and passive scalar fields in reflexionally invariant turbulence. This 
result is found to be exact for rJr0 + 0 but is demonstrated t o  be incorrect in 
general for finite T , / T ~  because of effects of helicity fluctuations. The nature of the 
failure of the direct-interaction approximation is exhibited by an exactly soluble 
model system. Analysis based on a double-averaging device shows that long- 
range, persistent helicity fluctuations in reflexionally invariant turbulence give 
an anomalous negative contribution to the magnetic diffusivity which depends 
on the helicity covariance function. We term this the a2 effect. The magnitude of 
the effect depends sensitively on the turbulence statistics. If the characteristic 
scales of the helicity fluctuations are sufficiently larger than T~ and l/ko, the 
magnetic diffusivity is negative, implying unstable growth, while a passive scalar 
field diffuses normally. On the other hand, a crude estimate suggests that the 
a2 effect is small in normally distributed turbulence. 

1. Introduction 
The evolution of weak magnetic fields in a conducting turbulent fluid has 

received sustained investigation since the pioneering work of Parker (1955). 
Recent studies with complete references are Moffatt (1976) and Roberts & 
Soward (1975). Opposing views are presented by Parker (1971) and Moffatt 
(1974). Parker argues that a slowly varying mean magnetic field in reflexionally 
invariant homogeneous turbulence should experience the same long-time dif- 
fusivity as a passive scalar field if there is neither Ohmic dissipation nor moIecular 
diffusion. Moffatt considers it unlikely that a diffusivity coefficient for the 
magnetic field exists at all in the absence of Ohmic dissipation. 

The equation for the magnetic fieldBi in a perfectly conducting, incompressible 
fluid with velocity ui can be written as 
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with V . B  = V . U  = 0. 

This is identical in form with the inviscid vorticity equation of an Euler fluid. 
Both Parker and Moffatt work from Cauchy’s solution of (1.1): 

B,(X(a, t ) ,  t )  = Bj(a, 0) aX,(a, t)/aaj. (1.2) 

Here X(a, t )  is the position at  time t of a fluid element whose initial position is a. 
The corresponding equations for a passive scalar field q5 which is convected 
without molecular diffusivity are 

aq5/at+u.v+ = o (1.3) 

and q5(X(a, t ) ,  t f  = #(a, 0)- (1.4) 

Parker considers the ensemble average of ( I  .2) for t so large that typical fluid 
elements have wandered many correlation lengths (eddy diameters) from their 
origins. He argues that there is then negligible statistical dependence between 
the displacement and the strain of a fluid element because the element has 
suffered many random rotations in the course of its long random walk. Parker 
develops this argument in considerable detail and is led to conclude that the 
average of (1.2) may be factored to yield 

(B,(X(a, t ) , t ) )  = (Bjh 0)) (aX,(a, t)/aaJ. (1.5) 

(&&(a, t)/aaj) = &. (1.6) 

In homogeneous isotropic turbulence, simple symmetry arguments show that 

Thus (1.5) yields the precise vector analogue of (1.4), averaged, and implies that 
the diffusion of both magnetic and scalar fields at  long times depends solely, 
and in exactly the same way, upon the distribution of particle displacement 
X(a, t )  -a. 

Moffatt derives an exact formal expression for the effective eddy diffusivity 
acting on the magnetic field. If there is homogeneity, isotropy, incompressibility 
and reflexional invariance, Moffatt’s result can be written in the form? 

qrnag(t) = rscal(t) +Ar(t)? (1.7) 

r scad t )  = 3 (v,(a, t )  %(a, 4) ds, (1.8) s,” 
Ar(t)  = A j t I t  [(vj(a, t )  vj(a, 4 av,(a, s)/aa,> 

6 0 0  
- (vj(a, t )  v,(a, r )  av,(a, s)/a+] ds dr. (1.9) 

Here vi(a, t )  = i3,Yi(a, t)/at is the Lagrangian velocity. The quantity qscal is the 
ordinary turbulent diffusivity derived by Taylor (1921). 

Moffatt argues that there is no obvious reason why the double integral in (1.9) 
should remain finite as t+m, let alone vanish. The basic point here is that 

r t  

t More compact forms of (1.8) and (1.9) are derived in the appendix. 
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grows without limit as t -+ 00, even though its average, as given by (1.6), vanishes. 
Therefore factoring the averages to give (1.5), or a similar factoring which would 
give A r ( t )  = 0, is a delicate matter requiring careful justification. 

The displacement X(a, t )  - a is related in a complicated way to the Eulerian 
velocity field; it carries information from the whole history of the flow. For this 
reason, the elegant Lagrangian formulae (1.3) and (1.4) perhaps are not the 
clearest starting point for determining the degree of similarity between the 
dynamics of magnetic and scalar fields. The present paper deals instead with 
analysis in the Eulerian frame. Examples are constructed in which there is com- 
plete statistical independence of the Eulerian velocity fields in successive short 
time interva1s.t Then the fluctuating magnetic field existing at  the end of a given 
time interval can make no contribution to the mean magnetic field in later time 
intervals. This permits some simplicities of analysis which are most naturally 
formulated in Eulerian rather than Lagrangian terms. 

In  the Eulerian formulation, the evolution of the mean magnetic field can be 
reduced to that of the mean Green’s tensor 

h 

Gin(x, t ;  x‘, t‘) = (G,,(x, t ;  x’, t ’ ) )  (1.10) 

associated with (1.1). The unaveraged tensor 6,, satisfies 
h 

Gin(x,t;x’,t’) = B,(x,t), Bi(X,t’) = T&(V)8(X-X’), (1.11) 

where Bi(x, t )  obeys (l.l), 
p,,(v) = sin - v-2a2/axi axn (1.12) 

is the solenoidal projection operator, and V-2 is defined by W2V2f = f for well- 
behaved functions f. Thus is the magnetic field with a particular initial 
condition. 

The present paper has three principal objectives. The first is to suggest, by 
means of the Eulerian analysis, that the diffusion of magnetic and of scalar fields 
in reflexion-invariant isotropic turbulence are indeed distinct phenomena; a t  the 
least, the magnetic diffusivity appears to be quantitatively smaller than that of 
the scalar field, and, as Moffatt suggests, it need not exist at  all. The anomalous 
magnetic diffusivity which we find is due to the effects of local helicity fluctua- 
tions in turbulence whose mean helicity is zero. Our second objective is to 
demonstrate that the magnetic diffusion problem lays bare a fundamental 
inadequacy of analytical turbulence approximations of the direct-interaction 
type, although these same approximations give excellent results for diffusion of 
a passive scalar field. The difference is associated with the fact that scalar 
diffusion conserves scalar variance, while (1.1) does not conserve magnetic 
energy. Our third objective is to suggest some procedures for future systematic 
treatment of the magnetic diffusion problem. 

Some shortcomings of perturbation-theory-based turbulence approximations 
for hydromagnetic turbulence were exposed in an earlier paper (Kraichnan & 
Nagarajan 1967). It was found that the growth or decay of the total energy of 

t A similar device is used by Steenbeck & Krause (1969) and by Kraichnan (1968). 
42-2 
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a weak magnetic field acted on by turbulence depended upon a competition 
between dynamo effects and spectral out-sweeping processes. These phenomena 
may be well estimated individually by the approximations used, but the sign of 
their algebraic sum, which is crucial in determining growth or decay, cannot be 
reliably determined. The present paper shows that the same class of turbulence 
approximations cannot determine whether the mean magnetic field relaxes by 
a modified eddy diffusion process or shows anomalous, non-diffusive behaviour. 
The effects of helicity fluctuations in reflexion-invariant turbulence were neg- 
lected completely by Kraichnan & Nagarajan because they first show up in the 
fourth order of perturbation theory, while the structure of the direct-interaction 
type of approximations is determined by coefficients obtained in second-order 
perturbation theory. Inclusion of helicity-fluctuation effects may alter some 
qualitative conclusions about energy transfer in isotropic hydromagnetic 
turbulence. 

2. Diffusion of a passive scalar field 
The concept of eddy diffusivity in the convection of a passive scalar field by 

turbulence is expressed analytically in a simple way by the direct-interaction 
approximation. In  this section we shall review that approximation, and the 
simpler quasi-linear approximation, in preparation for applying the approxima- 
tions to the diffusion of weak magnetic fields. 

The mean Green’s function for the scalar field is 

G(x- x’, t - t’) = ($(x, t ) ) ,  $(x, t’) = S(X - x’), (2.1) 

where $ satisfies (1.3). The direct-interaction approximation for G is a non-local 
diffusion equation (Roberts 1961) which may be written in the form 

where 

and homogeneity is assumed. If x and t are large compared with correlation scales 
of the turbulence, G(x - y, t -  s) may be approximated by G(x, t )  in (2.2), so that 
the equation reduces to the local form 

Q(X - x‘, t - t ’ )  = (Ui(X, t )  Uj(X‘, t ’ ) )  (2.3) 

where 

and we now make the additional assumption of isotropy. In  a Fourier representa- 
tion, 

q(t) = $Jk/ U(k,s)g(k,s)d%, (2.6) 
0 

where U(k, t )  and g(k, t )  are the respective transforms of &(x, t )  and G(x, t ) ,  The 
energy spectrum function is 

E(k)  = 2nk2U(k, 0 ) ;  
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it satisfies 

where vo is the root-mean-square velocity in any direction. The initial condition 
for g is g ( k ,  0 )  = 1. 

Equation (2.2) gives excellent quantitative agreement with computer simula- 
tions of diffusion in a random isotropic velocity field whose spectrum is compactly 
peaked about a wavenumber k, (Kraichnan 1970a). This agreement holds for 
randomly time-varying velocity fields in two and three dimensions and for 
velocity fields in three dimensions which are random in space but frozen in time. 

Equation (2.2) is related to a more primitive approximation obtained by 
simple iteration of (1.3), followed by a statistical-independence approximation. 
Assume that either there is no fluctuating scalar field at t = 0 or that the fluctu- 
ating field at t = 0 is statistically independent of the velocity field. Formal 
integration of (1.3), insertion of the resultant expression for +(x, t )  back into the 
right-hand side of (1.3) and averaging then yields 

a(+(x, t))/at = u(x, t )  . v u(x, 8). V+(X, s) as. (2.7) ( 1: ) 
There is no initial-value contribution to (2.7) because of our assumption and 
because (u(x, t ) )  = 0. Now make the approximation of splitting the average on 
the right-hand side into averages over the velocity field and scalar field 
individually by replacing +(x, s) with (+(x, s)). The result is 

a 
a($h(x, t ) ) /at  = .y-; &(O, t -s) - ($h(x, s))ds. 

axi ax3 

We shall call (2.8) the quasi-linear approximation. It has been made in many 
contexts, and under many Werent names. In  the hydromagnetic literature it has 
commonly been called the first-order-smoothing approximation. 

Equation (2.8) is local in space, in contrast to (2.2). If G(y, s) in (2.2) is approxi- 
mated by G(y, 0)  = 6(y), then the two equations become the same, provided the 
initial condition (2.1) is used with (2.8). 

If the velocity field is peaked about wavenumber k,, an eddy-circulation time 
is defined by 7, = l/v, k,. A correlation time of the velocity field is defined by 

If the velocity field obeys the Navier-Stokes equation at moderate Reynolds 
numbers, 71 N 7,. 

In  the limit T~ < 7, (white-noise velocity field), g(k, t )  M 1 for k which contribute 
appreciably to  the integral over Q(0, t ) .  In  this limit, (2.2), (2.4) and (2.8) are 
equivalent and asymptotically exact, for B T ~ .  Also, in the limit, 

r(t) = 5 as U(k,  S )  d3k, ~ ( o o )  = 71~:. (2.10) 7: s 
Near the limit, (2.4), with ~(co) = T ~ W ; ,  is in error by O[(T~/T,)~V~~~].  This is easily 
seen in the case where u(x, t )  is constant in time on intervals of length 2~~ and 
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statistically independent in successive intervals. The error in passing from the 
exact equation (2.7) is then readily estimated because only that part of the 
fluctuating scalar field generated during a given time interval of length 2~~ can 
contribute to the right-hand side of (2.7) during that interval. 

When T~ 2 ro, the factor G(y, s) in the integrand makes an effective cut-off of 
the integral (2.5) at t N T ~ ,  giving ~(co) N 70w& This is true in particular for frozen 
velocity fields with T~ = 00 (Kraichnan 1 9 7 0 ~ ) .  Thus the principal improvement 
offered by the direct-interaction approximation over the simpler quasi-linear 
approximation is the replacement of T~ in the expression for q(co0) by an effective 
correlation time 7* given approximately by 

3. Diffusion of magnetic fields by helical isotropic turbulence 
Both the direct-interaction approximation and the quasi-linear approximation 

can be carried out for magnetic fields obeying (1.1) in close analogy to the analysis 
for the passive scalar field (Lerche 1973u, b, c). There is some added complexity 
because the magnetic field is a vector and the direct-interaction equations involve 
the tensor Green’s function. If the velocity field is statistically homogeneous and 
isotropic, the Green’s tensor can be expressed in terms of a single scalar and a 
single pseudo-scalar. Thus 

o i j ( X ,  t ;  XI,  t ’ )  = qi(o) G ( X  - X I ,  t - t’) + Eimj a ~ ( x  - X I ,  t - t y a x ,  

g, j (k ,  t )  = P,(k) g(k,  t )  + ik, ~.i,jh(k, t ) .  

(3.1) 

(3.2) 

or, in the Fourier representation, 

We assume stationarity also in choosing the notation for (3.1) and (3.2). The 
pseudo-scalars H(x,  t )  and h(E, t )  vanish if there is reflexion invariance. 

We shall work out explicitly only the quasi-linear equations. Assume that the 
velocity correlation has the form 

U&(X) t )  = U&(x, 0 )  D(t) .  (3.3) 

The quasi-linear analysis proceeds in direct analogy to the passage from (2.7) to 
(2.8). In  the present case, we find 

where 

and Vi = alax,. Each V in the operator L,,(x, t )  acts on everything to its right, and 
all the u. factors have arguments (x,  t ) .  

Isotropy implies 
(u,uj> = sijv:, (ai aUi/ax,> = p6inj, (3.6), (3.7) 

(3.8) 

and the helicity density is 

(U .a) = (ai cinj aUjlax,> = 6p. 
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Equations (3.6) and (3.7)) together with homogeneity and the solenoidal condi- 
tions V . u = V .  B = 0, give a simplification of Lin(x, t) to the form 

Li, = v; sin v2 - 2pEijn vj. (3.9) 

If (B(x ,  t)) varies slowly compared with the correlation scales of the velocity 
field, (3.4) then reduces to 

a(B)/at = T1 v; v ~ ( B )  - 2T1pv x (B). (3.10) 

Equation (3.11) resembles the equation (Steenbeck & Krause 1969; Moffatt 

(3.11) 
1970) 

for the low-conductivity regime. Here h is the Ohmic diffusivity and 

a(B)/at = hV2(B) - a’V x (B) 

(3.12) 

where H ( k )  is the helicity spectrum. The present quasi-linear approximation has 
been discussed by Steenbeck & Krause (1969), Roberts (1971), Lerche & Parker 
(1973)) Moffatt (1974), Roberts & Soward (1975), and others. 

Moffatt states that, in conflict with (3.10), (u x b) vanishes in the quasi-linear 
approximation unless h > 0. He starts by noting that the quasi-linear approxi- 
mation for h = 0 is equivalent to assuming 

ab/at = V x (U x (B)), (3.13) 

where b = B - (B) is the fluctuating magnetic field. The four-dimensional 
Fourier transform of (3.13) is 

~6 = - (k.  B,) il, (3.14) 

where w is frequency and B, is a uniform mean magnetic field, the simplest case. 
Moffatt concludes from (3.14) that 6 and il are ‘exactly in phase’, so that the 
mean electromagnetic force (u x b) vanishes. This argument is incorrect because 
it fails to take into account the initial condition b(x, 0) = 0 (Roberts & Soward 
1975). In  fact, if B(x, 0) = B, it follows directly from ( l . l ) ,  without any approxi- 
mation, that 

[d(u x b)/dt]t,o = - 2pBO. (3.15) 

As in the scalar case, (3.10) is asymptotically exact, with error of order 7:/7;, as 
-+ 0. The direct-interaction equations for the magnetic Green’s tensor have 

not yet been solved in detail for isotropic turbulence with non-vanishing helicity. 
Their form strongly suggests that, again as in the scalar case, they yield behaviour 
for slowly varying mean magnetic fields which is qualitatively the same as (3.10) 

in the latter is replaced by the T* defined in (2.11). With this replacement, 
(3.10) asserts, in essence, that the behaviour of (B) is well characterized by the 
initial behaviour of (a2B/at2) at each of a succession of time intervals equal to an 
effective decorrelation time of the diffusion process. This decorrelation time is the 
velocity decorreIation time T~ if r1 is shorter than the eddy-circulation time T~ and 
is T,  otherwise. The effective time does not exceed T,  even in frozen turbulence 
because in a time T, a fluid element wanders from one eddy to a statistically 
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independent eddy, an effect which is incorporated in the direct-interaction 
equations by the presence of the Green's function in the effective diffusivity 
[cf. (2.5)]. 

Let us write the altered (3.10) as 

a q a t  = V V ~ B  - av x B, (3.16) 

where Q = r * v i ,  a = 2r,p and we have dropped the angular brackets for nota- 
tional convenience. The response tensor (3.2) associated with (3.16) is 

ggj(k, t )  = exp ( -7k2t) [Gj(k) cosh (a&) -ieimjkmk1sinh (a&)]. (3.17) 

The implications of (3.17) are easiest to display if the initial magnetic field is 
a plane sheet of the form 

(3.18) 

where b is a width parameter. Fourier transformation, the use of (3.17) and 
transformation back to x space yields (cf. Moffatt 1970) 

Bl(x, 0) = B2(x, 0) = 0, B3(x, 0) = exp ( -  x2,/4b2), 

B,(x, t )  = 0, B,(x, t )  = -f(% t )  sin (ax1/27), B3(X, t )  = f(X1,t) cos (ax,/2TJ), 
(3.19) 

where f(x,, t )  = (4777t)-4 exp [(a2t/47) - x;/4(7t + V)]. (3.20) 

Thus the a term in (3.16) gives two phenomena superimposed on .the diffusion 
due to  the 7 term. The first is an overall amplification by the factor exp (a2t/47) 
and the second is a helical wave structure in the x1 direction such that the B vector 
rotates parallel to the x,, x3 plane with wavenumber 427 .  

If the turbulence approaches maximal helicity (Kraichnan 1973), p w @k,, so 
that 

a N wik,r ,  = vo(r*/ro). 

Then a17 k,, a2/7 T*/% (3.21) 

Thus the wavenumber of the helical wave in this case is N k,, independent of r * ,  
while the amplification-factor growth rate is proportional to r*.  For r* N r,, the 
growth rate is N 1/r0. 

4. Helicity fluctuations in reflexion-invariant turbulence 
If the isotropic homogeneous turbulence has reflexion invariance, then both 

the quasi-linear approximation and the direct-interaction approximation predict 
that the diffusion of a weak magnetic field is identical to that of a passive scalar 
field. The symmetries of this case require that the pseudo-scalar H in (3.1) vanish. 
The equations for the scalar G in the two approximations are then precisely those 
given for the scalar G in $ 2 .  We wish now to demonstrate that the effects of local 
helicity fluctuations make this prediction internally inconsistent and may cause 
profound differences in behaviour between scalar and magnetic fields. 

We start by constructing an ensemble of velocity fields such that the isotropic 
relation (3.6) holds everywhere but (3.7) is replaced by 

(4.1) (ui auj/axn) = cinj Ax, t ) ,  
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where p(x, t )  is a nearly arbitrary function of x and t .  These properties can be 
realized by a superposition of randomly placed and oriented flow elements, each 
element consisting of a pair of linked vortex rings. The rings all have identical 
size and shape. The axial vortex line of each ring forms a circle; for the two rings 
of an element, these circles are perpendicular, and each passes through the centre 
of the other.? 

Such flow elements have an intrinsic helicity whose sign is determined by 
whether the vortex vectors of the two rings go clockwise or counterclockwise 
around each other. The sign is independent of the orientation of the element. It 
reverses if the vorticity of one ring is reversed but is unchanged under reversal 
of both rings (change of sign of the velocity field of the element). 

Equation (3.6) is assured if the placement of elements is statistically homo- 
geneous and isotropic, disregarding helicity sign. Equation (4.1) is realized by 
weighting the relative probabilities of the two possible signs of helicity of an 
element centred at  x according to p(x, t ) .  Equal probabilities everywhere give 
p(x, t )  = 0 everywhere. The verification of (3.6) involves two steps. There is no 
velocity correlation between distinct elements because the sign of the velocity of 
each element is random. (Note that reversal of the sign of the velocity of an 
element corresponds to rotation of the element through 180" about the axis con- 
necting the centres of the two vortex rings.) The diagonal elements of (3.6) then 
follow immediately from overall homogeneity and isotropy and are obviously 
independent of the helicity distribution. The vanishing of the off-diagonal 
elements of (uiui> requires that the average of ui uj over the orientation of a single 
element vanishes everywhere in the field of that element unless i = j. This can be 
verified by considering the effects of rotations of the element about and 
perpendicular to the axis of centres. 

If the thickness of the vortex rings is comparable to their diameter and the 
latter is - I/k,, then the velocity field will be geaked about a wavenumber k,. 
A velocity correlation time T~ with p(x, t )  constant in time can be realized by 
changing to new, independent realizations at time intervals of length 2 ~ ~ .  There 
are restrictions on the degree of variation of p(x, t )  with x and t. Values of Ip(x, t )  I 
of order vgk, can be realized but only if the scale of spatial variation of p(x, t )  
is 2 l/k,. The scale of variation of p(x, t )  in time must of course be 2 T~ if the 
ensemble is realized as stated. 

If the analysis leading to (3.10) is now repeated, the result is 

aB/at = qV2B - V x [E(x, t )  B], 

where 7 = 71 vf, 4x,  t )  = 271pu(x, t ) ,  

and B denotes an average over the present ensemble. Our essential step is now 
to consider a superensemble, or ensemble of ensembles, over which a(x, t )  is a 
stationary, homogeneous, isotropic random function of x and t ,  with zero mean. 
Then (4.2) is a stochastic equation which may be treated by the quasi-linear and 

( 4 4  

t See Moffatt (1969) for the relation between helicity and linkage of vortex lines and 
for other examples of flow elements with intrinsic helicity. 
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direct-interaction approximations. We take 

(a(x , t )a (x’ , t ’ ) )  = A(x-x’)D,(t-t’) ,  A E A(O), 7, = IOaD(t )d t ,  (4.3) 

where angular brackets now denote averaging over the superensemble. 
The quasi-linear approximation to (4.2) is slightly complicated by the damping 

term yV2B. If the Green’s function associated with this term is used to integrate 
(4.2) formally, then the analogue to (2.7) so obtained is 

where Go(x, t )  = (47ryt)fexp ( -x2/4yt). (4.5) 

We now assume that the spectrum of a(x, t )  is concentrated about a wave- 
number k,, and we restrict r, by 

r2 2 rl, 72 < (A3k2)-1, r2 < (yk;)-l .  (4.6) 

The first of these three conditions is a consistency requirement which follows 
from the way we have constructed the superensemble. The second is the condition 
for validity of the quasi-linear approximation (note that a has the dimensions of 
velocity and plays a role analogous to that of u in (2.7)). The third condition 
ensures that the smearing effects of Go in (4.4) can be neglected during the interval 
of order ra in which correlations in (4.4) are non-negligible. 

With (4.6) satisfied, we can replace Go by 6(x- y) in (4.4)) split the average, 
replace (B(y, 8)) by ( B ( x ,  t)) and obtain, for t % r,, 

a(B)iat = VV~(B)  + r2V x (av x a )  (B). (4.7) 

Now 

and the second term vanishes because of homogeneity. Hence, noting that 

(aV x a) = A V  x + (aVa) x 

V x V x = VV. -V2, V.  B = 0, 

we have, finally, a(B)/at = (7 - 7,A) V2(B). (4.8) 

Equation (4.8) shows that sufficiently long-range and persistent zero-mean 
helicity fluctuations in a reflexionally invariant, statistically isotropic velocity 
field make a negative contribution to the effective eddy diffusivity acting on the 
magnetic field. If A - vt Ici 721 (maximal helicity in typical realizations of the 
subensemble), then 

r2 A/y - r2 r1 vi kg = r2 r1/ri, 

which goes to zero as r2/ro+ 0, r l / ~ o  + 0. This is consistent with the conclusion 
in $ 3  that the quasi-linear approximation (3.10) is exact in the limit. (Note that, 
in (3.10), p measures the mean helicity, which is zero for the present ensemble.) 
But if (4.8) is extrapolated to r1 - ro, as was done with (3.10)) then the negative 
term in the diffusivity is, at  the least, comparable to the positive term, since we 
take r2 > rl. If r2 is sufficiently larger than T ~ ,  and k2/ko is small enough that (4.6) 
holds, then y - r2A,  is negative. This regime can be reached by sufficiently large r2 
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and small k, even if A has a value corresponding to much weaker-than-maximal 
helicity fluctuations. We still assume, in this regime, that the typical wave- 
numbers of (B) are small compared with k,. Thus we are ledto the conclusion that 
there exist reflexionally invariant, statistically isotropic velocity fields in which 
a mean magnetic field experiences a negative net diffusivity, and so grows 
unstably, while a passive scalar field feels a normal, positive eddy diffusivity . 

This conclusion clearly is inconsistent with the prediction of identical dif- 
fusivity for scalar and magnetic fields which comes from directly applying the 
quasi-linear or direct-interaction approximation to the zero-helicity super- 
ensemble. If the same double-averaging analysis is applied to scalar diffusion, no 
inconsistency with direct use of the quasi-linear or direct-interaction approxima- 
tion arises. This is because the eddy diffusivity (2.5) depends only on the diagonal 
elements qi and is independent of whether a is zero everywhere, fluctuates or 
is a non-zero constant. 

In  the magnetic case, we believe that the correct physics are contained in the 
double-ensemble analysis; that the derivation of (4.8) is valid if (4.6) is satisfied; 
and that the suggested difference between the behaviour of scalar and magnetic 
fields is real. The implication is then that there is a qualitative deficiency in the 
quasi-linear and direct-interaction approximations when they are applied 
directly to calculate the magnetic Green’s tensor in reflexion-invariant isotropic 
turbulence. In  $5, we shall display the nature of the trouble, and give some 
support to the present two-stage analysis, by applying the approximations to 
a simple model problem for which exact solutions are available. 

In  the quasi-linear approximation, 7 is a second-order moment of the velocity 
field while A is a fourth-order moment. Thus the relative magnitude of the 
negative contribution to the net diffusivity in (4.8) can depend sensitively on the 
statistics of the turbulence. The superensembles with long-range helicity fluctua- 
tions treated in the present section are necessarily non-normal. We wish now to 
attempt a crude estimate of the effect of helicity fluctuations on magnetic 
diffusivity in reflexion-invariant , normally distributed turbulence. 

The standard rule for reducing fourth-order moments of a normal zero-mean 
field to a sum of products of.second-order moments gives 

((u.o)2) = 39p-v;(U.V2u), (4.9) 

where the second-order moments have been evaluated from the isotropic relations 
(3.6)-( 3.8). To give an explicit illustration, suppose that the velocity spectrum 
is confined t o  a thin shell of radius k, in k space. Then (u. V2u) = - 321: k: and 
the condition that the helicity should fall within maximal values is 

(4.10) 

(4.11) 

The minimum value in (4. I I)  corresponds to multivariate-normal, reflexion- 
invariant velocity statistics. The maximum value can be realized in a non- 
normal, reflexionally invariant superensemble by combining, with equal weights, 
normal ensembles with maximal positive and maximal negative helicities. The 
mean-square helicity fluctuation in the normal, reflexionally invariant ensemble 
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is then & of the mean-square helicity fluctuation in the non-normal ensemble. 
The latter has the same values of v; and (u~)/(u,)>" as the former but has maximal 
helicity in each realization. 

Now, to estimate the behaviour of the normal, non-helical ensemble with 
spectrum concentrated at k,, we take 7, = T, and carry through the super- 
ensemble analysis with a value of A corresponding to the minimum value in 
(4.11). Then in (4.8) we find 

A = ki T:, T 2 ~ 4 / 7  = i (T1/70)2.  (4.12) 

The relative magnitude of the negative contribution to  the net diffusivity then 
increases like 721 and should be maximum for a frozen velocity field. In  the latter 
case we replace T~ by T* = T ~ ,  as in $2. [For a frozen field with concentrated 
spectrum, the steady-state passive scalar 7 is given quite accurately by l-Ov~r, 
according to numerical experiments (Kraichnan 1970a).] Equation (4.12) sug- 
gests that the difference between magnetic and scalar diffusivities in normal, 
non-helical turbulence should be small if 7, is less than, say, &-o and that the 
magnetic diffusivity should be positive and not very different from the scalar 
value even in the limit of frozen fields. Moreover, we can argue that the present 
estimates of the negative contribution to diffusivity are overestimates. This is 
because the third inequality in (4.6) is violated when 7, = T ~ ,  k, = k, and the 
smearing effect of Go in (4.4) no longer is negligible. However, the crudity, lack 
of rigour and consequent unreliability of our estimation procedure for normal, 
non-helical turbulence should be emphasized. 

The analysis leading to (4.8) has been carried out in the Eulerian framework. 
The result is corroborated by Lagrangian analysis starting from Moffatt's (1974) 
expressions for magnetic diffusivity. The Lagrangian treatment is outlined in 
the appendix. 

5. A model problem 

as a stochastic coefficient function. It conserves the integral of 
The simplest model of such a system is the random oscillator 

Equation (1.3) for scalar diffusion is a linear equation with the velocity field 
over all space. 

dyi/dt = ay2, dyz/dt = -ay i ,  (5.1) 

where a is a random variable with zero mean. It conserves y;  + y$ .  Assume that 
a is Gaussian and define T~ by (a2) = l / ~ t .  Let a be piecewise constant on intervals 
of duration 27, and statistically independent for distinct intervals, with the f i s t  
interval starting at t = 0.t 

The off-diagonaI elements G,, and G,, of the average response matrix vanish 
by symmetry. If 7, = 00, the diagonal elements are exactly (Kraichnan 1961) 

(5.2) 

For finite r,, only the average value of y a t  the end of an interval 27, can contribute 
to  the evolution of the average in the next interval because of the independence 

G(t)  = G,,(t) = G,,(t) = exp ( -  *t2/Tt). 

t Strict stationarity can be restored by randomizing the interval end points, thereby 
introducing complications, but inessential changes, in the results. 
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condition on a. Hence, from the definition of a response matrix, and the fact that 
Gnm(t) is diagonal, the value of the response function G(t)  a t  the end of the nth 
interval is 

G(t)  = [exp ( - 2 ~ : / ~ : ) ] n  = exp ( - ~ T , / T : )  ( t  = 2n7,). (5.3) 

The direct-interaction approximation for G(t)  in the case T,  = 00 is (Kraichnan 
1961) 

where J1 is the Bessel function of order 1. If 71 is finite, the same argument applies 
as for the exact solution, and the result is 

G(t)  = (tl'ro)-l Jl(2t/TO), (5.4) 

G(t)  = ~ J 1 ~ ~ ~ 1 / ~ ~ ~ / ~ ~ ~ 1 / ~ 0 ~ I n  ( t  = 2n71). (5 .5 )  

Thus both exact and approximate G(t)  show essentially exponential decay 
with t for finite 7,. They agree asymptotically in the limit T, /T~-+  0, and, for 7, N T ~ ,  

both give an exponential decay rate - 7;l. For infinite 7,, both (5 .2)  and (5.4) 
give the overall decay time 

/om G(t)  dt 7 0 ,  

but (5 .4 )  badly approximates (5 .2)  at large t. In  this last respect, the model differs 
from the scalar diffusion dynamics because the direct-interaction approximation 
is a good approximation for all t when the diffusing velocity field is frozen in time 
(Kraichnan 1 970 a). 

To model the non-conservative evolution equation (1.1) for the magnetic field, 
we take the somewhat more complicated system 

dy,/dt = ay,, dy,/dt = by,, dy3/dt = ay4, dy,/dt = -by,. (5.6) 

Here a and b are normal random variables with zero means, constant on intervals 
27, and statistically independent on distinct intervals. We take 

{a2) = {ba)  = l / ~ f ,  7f{ab) = a. (5.7) 

Here u models the mean helicity, and the subsystems ( 1 , 2 )  and ( 3 , 4 )  model the 
oppositely signed helicity modes of the magnetic field. The model system does 
not, in general, conserve X;y& Again, only diagonal elements of the mean response 
matrix are non-zero, and they satisfy 

GlAt) = @,At), G33W = G44W. (5.8) 

G,,(t) = (COS [( - & ) i t ] ) ,  G33(t) = (COS [(ab)+t]). (6.9) 

As before, consider 71 = co first. The exact values of the G matrix are 

The averages in (5.9) are easily evaluated for the three special cases tc = 1 , 0  and 
- 1. For CI = 1, we have b = a in every realization, so that 

(5.10) 
Gll(t)  = (cosh ( a t ) )  = exp ( it2/7f), 
G3,(t) = (cos (at))  = exp ( - +t2/7f). 

For a = - 1, b = -a, and the values of C,, and G,, are exchanged. The case a = 0 
models the magnetic-field dynamics for reflexion-invariant isotropic turbulence. 

1 
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Here there appears to be no simple closed form for the solution, but series 
expansion of (5.9) and application of the moment-evaluation rules for normal 
distributions yields the absolutely convergent series solution 

m 

G,,(t) = G,,(t) = &(t/TO), &(x) = C [ (2n)!/Pn!I2x4"/(4n)! .  (5.11) 

& ( t / ~ ~ )  rises monotonically with t ,  goes like 1 +&(t/7,)* for small t ,  and goes like 
exp ($t2/7E) for large t. 
If 0 < (a1 c 1, then a and b are imperfectly correlated, with the result that 

both G,, and G33 in (5.10) are averages over mixtures of realizations with real 
frequencies and realizations with imaginary frequencies. Hence both become 
infinite as t -+ co. If 1 -a < 1, then G,, grows much faster than G,, as t --f co, and 
vice versa if 1 +a < 1. 

The arguments relating finite 7, to infinite 71 are the same as before. Thus we 
have 

G,,(t) = exp (t7,/73, G3,(t) = exp ( - t7, /73 (a = 1, t = 2n7,), (5.12) 

(5.13) 

n=O 

G,,(t) = G3,(t) = [ & ( ~ T , / T ~ ) ] ~  (a = 0, t = 2n7,). 

The direct-interaction equations for i-, = 00 are 

dG,,/dt = (ab) Gll x Gll, dG,,/dt = - (ab) G3, * G33, (5.14) 

where G * G  = J ' : G ( ~ - ~ ) G ( ~ ) ~ ~ .  

For a = 1, the solution for G3, is given by (5 .4)  and that for G,, is obtained from 
it by replacing t by i t .  Thus 

Gl l ( t )  = (t/70)-1 11(2t/70), = (t/70)-1 J1(2t/70), (5.15) 

where I, is the modified Bessel function of order 1. G,, behaves like t-* exp ( 2 t / ~ ~ )  
for large t .  For a = - 1, the expressions for G,, and G,, are exchanged. For a = 0, 
it is immediately obvious from (5.14) that 

Gll(t) = G3,(t) = 1 (all t ) .  (5.16) 

The solutions of the direct-interaction equations for finite 7, are related to the 
infinite-7, solutions as in the previous analysis. Thus 

Gii( t )  = [Gii(27i)In, G33(t) = [G33(27i)In ( t  = 2nTi) ,  (5.17) 

where the right-hand sides are evaluated from (5.15) or (5.16). 
Comparison of the exact solutions for this four-mode problem with the direct- 

interaction approximation, as presented in the preceding equations, shows that 
the approximations for both G,,(t) and G33(t) are satisfactorily faithful, especially 
for finite 71, provided attention is confined to the cases a = 1 and a = - 1. But 
for the case a = 0, or uncorrelated a and b, the direct-interaction approximation 
gives the absurd result that G,, and G,, have the constant value one for all time. 
The failure of the approximation here is basically due to the fact that only 
second-order moments of a and b enter the equations (5.14) while the lowest 
moment which contributes to (5.11) is (a2b2), which gives the t4 term in & ( t / ~ ~ ) .  

The present system is certainly too simple to model well all the relevant 
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properties of the magnetic evolution equation ( I .  1). Nevertheless, the analogy 
would appear valid. The B . Vu term in (1.1) supplies an uncorrelated contribu- 
tion to the coupling coefficients of the modes of the B field in the case a = 0, with 
the result that the direct-interaction approximation for the magnetic diffusion is 
identical with that for scalar diffusion, where the B , Vu term is absent. The differ- 
ences between the two cases do not show up until the fourth order of perturbation 
theory, and at that order they involve perturbation terms not included in the 
direct-interaction approximation. This has been pointed out previously by 
Roberts (1975). The model problem gives support to the double-ensemble 
approach to the case a = 0 presented in $4. Thus a qualitatively satisfactory 
approximation to G,,(t) and G33(t) for a = 0 is given by the averages of the G,,(t) 
and G33(t) values given by the direct-interaction approximations to the cases 
a = 1 and a: = - I .  

6. Discussion and conclusions 
We wish now to summarize what is demonstrated and what is suggested in 

the analysis we have presented. First, in agreement with Roberts & Soward 
(1975) and in conflict with Moffatt (1974), we found in 3 3 that there is indeed an 
a-effect dynamo mechanism in helical isotropic turbulence with zero Ohmic dif- 
fusivity and with neglect of the Lorentz-force reaction on the turbulence. This 
a effect is predicted by the quasi-linear approximation and we find the latter to 
be asymptotically exact in the limit T,/T,,-+ 0,  where 7, and 70 are the correlation 
and eddy-circulation times of the turbulence respectively. An equivalent 
conclusion was reached by Steenbeck & Krause (1969). 

I n  $4, we started by noting that the quasi-linear approximation, and the 
direct-interaction approximation as well, gave identical diffusion for magnetic 
and passive-scalar fields in reflexion-invariant isotropic turbulence. Further 
analysis showed that this result is internally inconsistent. A double-averaging 
procedure was carried out such that an overall reflexion-invariant ensemble was 
formed from realizations with locally coherent helicity fluctuations. It was found 
that the helicity fluctuations made an anomalous, negative contribution to the 
effective diffusivity acting on the mean magnetic field. If the helicity fluctuations 
are strong and if they persist over distances and times large compared with the 
turbulence correlation scales (but still as small as desired compared with the 
characteristic scales of the mean field), then it was found that the magnetic 
diffusivity is negative, so that the mean magnetic field grows unstably. At the 
same time there is no anomalous behaviour of the passive-scalar diffusivity. We 
may term this phenomenon the a2 effect, since the anomalous diffusivity involves 
the correlation function of the locally smoothed a fluctuations. 

The a2 effect depends essentially on the helicity correlation, which is a fourth- 
order moment of the velocity field, while the ordinary turbulent diffusivity 
depends essentially on lower-order moments. A consequence is that the magni- 
tude of the anomalous contribution to the diffusivity and, consequently, the size 
of the difference between magnetic and scalar diffusivities depend sensitively on 
the statistics of the turbulence. In  $4 we attempted a crude estimate for normally 
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distributed, isotropic, reflexionally invariant turbulence. This suggested that for 
such turbulence the a2 effect is not large and that, in particular, the magnetic 
diffusivity is positive. 

The existence of the a2 effect shows that, in general, Parker’s (1971) conclusion 
that the magnetic and scalar diffusivities a t  long times are equal in reflexionally 
invariant isotropic turbulence cannot be correct. In this connexion, we wish to 
present here a simple argument which shows that the asymptotic, long-time 
diffusivities are equal, in general, only if the diffusivities are equal for short times 
(of the order of the turbulence correlation time) also. We consider, as in the body 
of the text, velocity fields which are statistically independent on intervals of 
duration 2r1. Then the scalar-field Green’s function for wavenumber k, which is 
diagonal in k because of homogeneity, must satisfy 

g(k, 2n71) = [g(k 271)lrr (6.1) 

and the defining scalar of the magnetic-field Green’s function must satisfy a 
similar relation. Hence the two Green’s functions can be equal for t = 2nr1 only 
if they are equal for t = 27,. 

Because the helicity correlation function is of fourth order in the velocity field, 
the a2 effect first shows up at the fourth order of perturbation theory or at the 
fourth order of a Taylor series expansion of the mean Green’s tensor about t = 0. 
The coefficients in the direct-interaction equations are determined by second- 
order perturbation theory and this is why helicity-fluctuation effects do not show 
up in that approximation. The nature of the difficulty is modelled by the exactly 
soluble systems with several degrees of freedom examined in $5. It remains 
possible that the direct-interaction approximation gives reasonable accuracy 
when applied to magnetic diffusion in normal turbulence, where we estimated 
that the a2 effect is not large.? If so, it might remain reasonably accurate when 
applied to the non-normal distributions of $4, provided the a fluctuations are on 
scales large compared with the turbulence correlation scale and provided the 
application is made in two stages. Thus the first stage would be to obtain (4.2), 
hopefully with reasonably accurate coefficients, and the second stage would be 
to take a superensemble, as explained in $4, and treat (4.2) by the direct- 
interaction approximation. The advantage over the quasi-linear approximation 
is that the restriction r1 < 70 and the similar restriction in (4.6) limiting the 
magnitude of the helicity correlation time T~ can be lifted. 
Our treatment of the a2 effect was carried out in the Eulerian formulation, 

where it appears to be simpler. However the results are confirmed by the analysis 
in the appendix, which uses Lagrangian expressions for a and for diffusivity 
which were derived by Moffatt (1974). 

The sensitivity of the a2 effect to  the velocity-field statistics makes it desirable 
to develop accurate numerical methods of determination. In the case of isotropic 
turbulence whose statistics have an analytically expressible form, one possible 
procedure is to compute the magnetic Green’s function scalar g(k, t )  as a power 

t Straightforward Taylor expansion about t = 0 shows that the scalar and magnetic 
diffusivities in reflexion-invariant normal turbulence are in fact identical up to order t“. 
Differences appear only at higher orders. 



Diffwion of magnetic fields by turbulence 673 

16 

14 

12 

10 

= 8  ts 

6 

4 

2 

I I I I I I 1 
3 

01 
1 2 

8/70 

F ~ a m  1. Model response function G(8) = ffll(t) = G,,(t) as given (i) by the 
exact solution (6.11) and (ii) by the vertex approximation (6.2). 

series in t .  Although this series is divergent, convergents to g(k, t )  can be con- 
structed from it. A similar procedure for finding the passive-scalar diffusivity in 
normal isotropic turbulence has proved successful (Kraichnan 1970 b). 

A more generally applicable approach, which holds promise for flows of astro- 
physical interest, is to compute the diffusion coefficients directly by following 
numerically the displacement and strain of an ensemble of fluid elements. We are 
currently carrying out such a programme for isotropic turbulence, using the 
difhsivity formulae derived in the appendix together with an adaptation of a 
computer program previously used to compute scalar diffusivity (Kraichnan 
1970a). The preliminary results confirm the existence of the 19 effect: the 
magnetic diffusivity is negative in reflexionally invariant isotropic turbulence 
with long-range, persistent helicity fluctuations. The results also show a negligible 
difference between scalar and magnetic diffusivities in normal, reflexionally 
invariant isotropic turbulence. 

Finally, it  is of interest to compute the magnetic diffusivity for isotropic 
turbulence by a higher-order closure approximation than the direct-interaction 
approximation. A higher closure involving vertex renormalization of the diagram 

43 F L M  75 
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expansion for the diffusion problem was described some years ago (Kraichnan 
1961). This closure is exact through up to fourth-order terms in perturbation 
theory, and it was found to give extraordinarily accurate results for the random 
oscillator (5.1) (Zoc. cit.,  figure 13). However, some global consistency properties 
of the direct-interaction approximation have not been proved for the higher 
closure. 

The great accuracy of the vertex closure extends to the model system (5.6). 
In common with the exact solutions, the closure predicts that both G,,(t) and 
G33(t) diverge as t-tco unless la1 = 1. For the crucial case a = 0, the closure 
yields for G = G,, = G,, the integral equations 

dG/dt = r i2G*H,  G(0) = 1, 
H = r i 2 ( J * J * J + H * H * J ) ,  (6.2) 

J = G + r j 2 ( J * J * H + H * H * H ) .  

Here H and J are vertex functions. We reserve the derivation of (6.2) for a later 
paper. The solution G(t)  is compared with the exact solution (5.11) in figure 1. 
It is in error by approximately 0.4 % at t = 27, and by approximately 5 % at 
t = 37,. This indicates a high accuracy at all t if the closure is applied to the 
piecewise-constant case for T, < 7,. 

It appears to be computationally feasible to carry out the vertex closure 
for scalar and magnetic diffusion by a normally distributed, isotropic, frozen (or 
piecewise constant) velocity field. An important outstanding question is how to 
include consistently the fourth-order cumulants of the velocity field which 
describe coherent helicity fluctuations in the non-normal case. 
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Appendix. Lagrangian treatment of superensemble 
The negative contribution to magnetic diffusivity from helicity fluctuations 

found by the Eulerian analysis of $ 4  is supported by the Lagrangian formulae 
for a and q obtained by Moffatt (1974). We shall start by rederiving Moffatt's 
results in a somewhat more compact form. Let the initial magnetic field &(a, 0)  
be expanded in a Taylor series about x = a + 5. Thus 

(A 1)  
Now take x = X(a, t ) ,  the position a t  time t of the fluid element which started 
at a, and average over the ensemble. If B(a, 0) is statistically independent of the 
velocity field, (A 1) used in (1.2) gives 

B,(a,O) = B,(~,O)-~,[,B,(x,O)/ax,+~~,~,~~B,(x,O)/ax,~x,- ... . 

W A X ,  t )>  = <ax,/aa,> (Bj(X9 0 ) )  - Yi,j@Bj(X, O)/ax,> 
(A 2) 

where Yi,j(t) = (f;,(t) ax,(t)/auj>, Cinrnj ( t )  = Ht,(t) f ( t )  a&(t)/a.j>. (A 3) 
+ C,,,j(azBj(x, o)/ax, ax,> - * * , 
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Homogeneity, isotropy, and the symmetry in n and m imply that the coeffi- 
cients in (A 2 )  have the forms 

(A 4) I axi(t)/aaj = Jij, yinj(t) = ei,jy(t), 
Cinmj(t)  = J i j  Jnm C(t) + (Jim Jjm + Jim sjn) C'(t)* 

By forming contractions of (A 4), we find 

y( t )  = kinjyinj(t), C(t) = &.[2Cinni(t) - Ciinn(tfI.1 (A 5 )  

The terms involving c(t) cannot contribute in (A2) because V.B = 0. The 
averages in (A 2) and (A 3) are taken at  fixed x. If the forms (A 4) are used in (A 2), 
the result is 

(B(x, t ) )  = Wx, 0)) - y( t )  v x (B(x, 0)) + C(t) V2(B(x, 0)) - * * * * (A 6) 

y(t)  = (ti! at1/aa,>, a t )  = H a 1  + atI/aa,D. (A 7) 

(9% t ) )  = M X ,  0)) + C S V )  v2 (9(x, 0)) - * * 3 (A 8) 

where d(t) = 6(&'ii> = HCD. (A 9) 

It follows from isotropy that ~ ( t )  and C(t) can be written as 

A similar treatment of the scalar field yields 

Now differentiate (As) with respect to t .  Following Moffatt (1974), we can 
express each (B(x, 0 ) )  on the right-hand side of the resulting differential equation 
as an infinite series in (B(x,t)) and its spatial derivatives by an iteration- 
reversion of (A 6). The result is 

a(B(x, t))/at = - a(t) V x (B(x, t ) )  +q(t) V'(B(x, t ) )  - . . . , (A 10) 

where a(t) = dy(t)/dt, r(t)  = dC(t)/dt + id")12/dt. (A 11)  

By using isotropy properties and the homogeneity relation 

a&, tm . . , V, . . .)paj = 0 

it is easy to show that the coefficients (A 11) for the a effect and diffusivity are the 
same as those obtained by Moffatt. [Moffatt's a(t)  is defined as the negative of 
ours; also, there are errors of sign in equations (4.4) and (4.6) of his paper.] 

If the spatial variation of (B(x, t ) )  is slow enough, the higher terms in the 
series (A 10) should be negligible compared with the terms shown explicitly. 
Assume that this is so and consider two isotropic homogeneous ensembles which 
are identical except that they give equal and opposite a(t). Homogeneity requires 
that a(t)  and ~ ( t )  be independent of position. At any t ,  the dispersion of fluid 
elements is finite, however, and the strictly homogeneous distribution will be 
locally indistinguishable, in its effects on the magnetic field, from distributions in 
which a(t) varies on a spatial scale large compared with the dispersion. By sym- 
metry ~ ( t )  is independent of the sign of a(t) .  Let q,(t) denote the value of q(t)  in 
either of the two ensembles. Let ~, , ( t )  denote the value of ~ ( t )  in the superensemble 
obtained by combining the positive-a and negative-a ensembles with equal 
weight. The analysis leading to (AlO) goes through for the superensemble in 
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precisely the same way as for the individual ensembles. The values of ~ ( t )  and 
[ ( t )  are simply the averages of the values for the individual ensembles. Hence 
~ ( t )  = 0 in the superensemble while C(t )  has the same value as it has in the two 
individual ensembles. It then follows from (A 11) that 

Now if we retrace the derivation of (4.8) without taking t T ~ ,  the result is 

Thus, identifying qo(t) with the coefficient of V2(B) in (Al3 )  and identifying 
7,(t) with the Eulerian subensemble diffusivity 7 in (4.2), we see that both the 
Eulerian and the Lagrangian formulation yield the same relationship between 
subensemble and superensemble diffusivities. The additional fact given by the 
Eulerian analysis is that for < T~ the diffusivity 7 for the subensemble is 
independent of the helicity parameter p.  It is less simple to derive this fact from 
the Lagrangian analysis, unless the latter is applied independently to each 
interval 2 ~ ~ .  When t-tw at constant a, the d[y(t)12/dt term in (A 11) becomes 
infinite as noted by Moffatt (1974). The Eulerian analysis implies that d[(t)/dt 
becomes negatively infinite, so that q(t)  remains finite. 
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